```
    Started on Sunday, 10 January 2021, 9:46 AM
        State Finished
Completed on Sunday, 10 January 2021, 11:01 AM
    Time taken 1 hour 15 mins
        Grade 25.00 out of 32.00 ( \(78 \%\) )
```

Question 1
Correct
Mark 1.00 out of 1.00

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a vector space V, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is

Select one:
a. linearly dependent and not a spanning set for V.
(b. linearly independent and not a spanning set for V.
c. linearly independent and a spanning set for V.
d. linearly dependent and a spanning set

The correct answer is: linearly independent and not a spanning set for V.

Question 2

Correct
Mark 1.00 out
of 1.00
If A is a 3×5-matrix, rows of A are linearly independent, then

Select one:
a. $\operatorname{rank}(A)=\operatorname{nullity}(A)+2$
b. $\operatorname{rank}(A)=\operatorname{nullity}(A)$
c. $\operatorname{rank}(A)=\operatorname{nullity}(A)+3$
($\mathrm{d} \cdot \operatorname{rank}(A)=\operatorname{nullity}(A)+1$

The correct answer is: $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$

Question 3

Correct

Mark 1.00 out of 1.00

If A is a 3×2 matrix, then
Select one:
a. The columns of A are linearly independentb. The rows of A are linearly dependentc. $\operatorname{Rank}(A)=3$d. The columns of A are linearly dependent

The correct answer is: The rows of A are linearly dependent

Question 4

 IncorrectMark 0.00 out of 1.00

The coordinate vector of $6+4 x$ with respect to the basis $[2 x, 2]$ is $(3,2)^{T}$

Select one:
(a) True \boldsymbol{x}
b. False

The correct answer is: False

Question 5
Correct
Mark 1.00 out of 1.00

The rank of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 2 \\ 2 & 6 & -1 & 2 & 1 \\ 3 & 10 & 0 & 4 & 3\end{array}\right)$ is
Select one:
a. 3

○. 1
(c. 2
d. 4

The correct answer is: 2

Question 6
Correct
Mark 1.00 out of 1.00

If $A=\left(\begin{array}{cccc}-1 & -2 & -1 & 0 \\ 1 & 2 & 2 & 0 \\ -2 & -4 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.

Select one:
a. True
(b. False \boldsymbol{V}

The correct answer is: False

Question 7

Correct
Mark 1.00 out of 1.00

The vectors $\left\{-x+1,2 x^{2}+3 x+3, x^{2}+x+2\right\}$ form a basis for P_{3}.

Select one:
O a. False
○. True

The correct answer is: False

Question 8
Correct
Mark 1.00 out of 1.00

Let V be a vector space, $v_{1}, v_{2}, \ldots v_{n} \in V$ be linearly independent, and $v \in V$, then the vectors $v_{1}, v_{2}, \ldots v_{n}, v$ are linearly independent.

Select one:
a. True

Ob. False

The correct answer is: False

Question 9
Correct
Mark 1.00 out of 1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}3 & 1 \\ -1 & 0\end{array}\right), A_{3}=\left(\begin{array}{cc}6 & -1 \\ -8 & -3\end{array}\right)\right\}$ is
Select one:
○. 1
b. 3
(C. 2
d. 0

The correct answer is: 2

Question 10
Incorrect
Mark 0.00 out of 1.00

If $T_{n \times n}$ is a transition matrix between two bases for a vector space V, $\operatorname{dim}(V)=n>0$, then Select one:
($\operatorname{ar} \cdot \operatorname{rank}(T)=1$
x
b. $\operatorname{det}(T)=1$
c. $\operatorname{nullity}(T)=n$
d. T is nonsingular

The correct answer is: T is nonsingular

Question 11
Correct
Mark 1.00 out of 1.00

Let $S=\{f \in C[-1,1]: f(-1)=f(1)\}$, then S is a subspace of $C[-1,1]$.
Select one:
O a. True $\sqrt{ }$
b. False

The correct answer is: True

Question 12
Correct
Mark 1.00 out of 1.00

Let A be a 4×6 matrix, and nullity $(A)=2$, then the system $A x=b$ has infinite number of solutions for every $b \in \mathbb{R}^{4}$.

Select one:

- a. True -
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=1-y\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:
a. True

○ b. False V

Question 14
Correct
Mark 1.00 out
Mark 1.00
of 1.00
$\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right)$ is
Select one:
a. 1
b. 0
©. 3
(o) d. 2

The correct answer is: 2

Question 15
Correct
Mark 1.00 out
of 1.00

If $v_{1}, v_{2}, \cdots, v_{n} \in V, \operatorname{dim}(V)=n$ and $v_{1}, v_{2}, \cdots, v_{n}$ are linearly independent, then Span $\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V$.

Select one:
a. False
© b. True

The correct answer is: True

Question 16
Correct
Mark 1.00 out of 1.00

Question 17
Incorrect
Mark 0.00 out of 1.00
let A be a 3×5-matrix, if the row echelon form of A has 1 nonzero row, then $\operatorname{dim}(c o l u m n$ space of A) is Select one:
a. 2
-b. 0
c. 3
(d. 1

The correct answer is: 1

If $f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]$ and $W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right)=0$ for some $x_{0} \in[a, b]$, then $f_{1}, f_{2}, \cdots, f_{n}$ are linearly dependent.

Select one:
a. False
(o) b. True \boldsymbol{x}

The correct answer is: False

Question 18
Incorrect
Mark 0.00 out of 1.00

Let $E=[3-x, 2+x], F=[1, x]$ be ordered bases for P_{2}. The transition matrix from E to F is Select one:
a. $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$
b. $\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$
© C. $\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)$
\times
d. $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$

Question 19
Correct
Mark 1.00 out of 1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=-3 x^{2}+x+5$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
a. $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$
b. $\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$
c. $\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)$
od. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$

Question 20
Incorrect
Mark 0.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{2}{3}, u_{2}=\binom{1}{2}\right]$ is

Select one:
a. $T=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
b. $T=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$
c. c. $T=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$
x
d. $T=\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$

Question 21
Correct
Mark 1.00 out
of 1.00
The coordinate vector of $\left(\begin{array}{c}-3 \\ -2 \\ -5\end{array}\right)$ with respect to the ordered basis $\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]$ is

Select one:
a. $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
b. $\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)$
c. $\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)$
d. $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$

If two nonzero vectors in a vector space V are linearly dependent, then each of them is a scalar multiple of the other.

Select one:
O a. True γ
b. False

Question 23 Incorrect Mark 0.00 out of 1.00

Which of the following is not a basis for the corresponding space
Select one:
© a. $\left\{x+4,1-x^{2}, x^{2}+x+3\right\} ; P_{3}$
\times
b. $\left\{(1,1)^{T},(2,-3)^{T}\right\} ; \mathbb{R}^{2}$
c. $\{5-x, x-1\} ; P_{2}$
d. $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

The correct answer is: $\left\{(-2,-1,-1)^{T},(-3,-3,0)^{T},(2,0,2)^{T}\right\} ; \mathbb{R}^{3}$

Question 24
Correct
Mark 1.00 out of 1.00

If $v_{1}, v_{2}, \cdots, v_{k}$ are vectors in a vector space V, and
$\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \cdots, v_{k-1}\right)$, then v_{k} can be written as alinear combination of $v_{1}, v_{2}, \cdots, v_{k-1}$

Select one:a. Trueb. False

The correct answer is: True

If A is an $m \times n$-matrix, and columns of A are linearly independent, then
Correct

Mark 1.00 out of 1.00

Select one:
a. $m=n$
b. $m=n+1$
c. $m \leq n$
() d. $n \leq m$

The correct answer is: $n \leq m$

Question 26

Correct
Mark 1.00 out of 1.00

Let A be a 5×4 matrix, and $\operatorname{rank}(A)=4$

Select one:
a. A has a row of zeros
© b. The columns of A are linearly independent
c. $\operatorname{nullity}(A)=1$d. The rows of A are linearly independent

The correct answer is: The columns of A are linearly independent

Question 27
Incorrect
Mark 0.00 out of 1.00

If A is a nonzero 4×2-matrix and $A x=0$ has infinitely many solutions, then $\operatorname{rank}(A)=$
Select one:
(a. 2
\times
b. 4
c. 3
od. 1

The correct answer is: 1

Question 28
Correct
Mark 1.00 out of 1.00

If A is a 4×3 matrix with $\operatorname{rank}(A)=3$, then the homogeneous system $A x=0$ has a nontrivial solution.
Select one:

- a. Falseb. True

The correct answer is: False

Question 29

Correct
Mark 1.00 out of 1.00

Question 30
Correct
Mark 1.00 out of 1.00
let A be a 4×7-matrix, if the row echelon form of A has 2 nonzero rows, then $\operatorname{dim}($ column space of A) is Select one:
a. 7
© c. $2 \checkmark$
d. 3

The correct answer is: 2

The functions $\sin x, \cos x, \sin (2 x)$ in $C^{2}[0,2 \pi]$ are

Select one:
a. linearly dependent
(b. linearly independent

The correct answer is: linearly independent

Question 31
Correct
Mark 1.00 out of 1.00

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{nullity}(A)=$

Select one:
a. 1
b. 3
C. 2

- d. 0

```
Question 32 The vectors {(1,-1, -4) T},(1,-1,1\mp@subsup{)}{}{T},(1,-1,2\mp@subsup{)}{}{T}}\mathrm{ form a basis for }\mp@subsup{\mathbb{R}}{}{3}
Correct
Mark 1.00 out
of 1.00
Select one:
O}\mathrm{ a. False 
b. True
```

The correct answer is: False

