<u>Dashboard</u> / My courses / <u>INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta</u> / <u>General</u> / <u>Second Exam</u>

Started on Sunday, 10 January 2021, 9:46 AM

State Finished

Completed on Sunday, 10 January 2021, 11:01 AM

Time taken 1 hour 15 mins

Grade 25.00 out of 32.00 (78%)

Question 1

Correct

Mark 1.00 out

of 1.00

If $\{v_1,v_2,v_3,v_4\}$ is a basis for a vector space V , then the set $\{v_1,v_2,v_3\}$ is

Select one:

- igcup a. linearly dependent and not a spanning set for V.
- lacksquare b. linearly independent and not a spanning set for V.

~

- \circ c. linearly independent and a spanning set for V.
- d. linearly dependent and a spanning set

The correct answer is: linearly independent and not a spanning set for V.

Question 2

Correct

Mark 1.00 out of 1.00

If A is a 3 imes 5-matrix, rows of A are linearly independent, then

Select one:

- igcup a. $\operatorname{rank}(A)=\operatorname{nullity}(A)+2$
- igcup b. $\operatorname{rank}(A) = \operatorname{nullity}(A)$
- \circ c. rank $(A) = \mathsf{nullity}(A) + 3$
- d. rank $(A) = \mathsf{nullity}(A) + 1$

~

The correct answer is: $\operatorname{rank}(A) = \operatorname{nullity}(A) + 1$

Question 3

Correct

Mark 1.00 out of 1.00

If A is a 3 imes 2 matrix, then

Select one:

- lacksquare a. The columns of A are linearly independent
- lacksquare b. The rows of A are linearly dependent

~

- ${\mathbb C}$ c. ${\sf Rank}(A)=3$
- \circ d. The columns of A are linearly dependent

The correct answer is: The rows of A are linearly dependent

Question 4

Incorrect

Mark 0.00 out of 1.00

The coordinate vector of 6+4x with respect to the basis $\left[2x,2\right]$ is $\left(3,2\right)^T$

Select one:

- a. True X
- b. False

The correct answer is: False

Question **5**

Correct

Mark 1.00 out of 1.00

The rank of
$$A=\begin{pmatrix}1&4&1&2&2\\2&6&-1&2&1\\3&10&0&4&3\end{pmatrix}$$
 is

Select one:

- \circ a. 3
- \circ b. 1
- \odot c. 2

~

 \odot d. 4

The correct answer is: 2

Question **6**

Correct

Mark 1.00 out of 1.00

If
$$A=egin{pmatrix} -1 & -2 & -1 & 0 \ 1 & 2 & 2 & 0 \ -2 & -4 & 0 & 0 \end{pmatrix}$$
 , then $\mathrm{rank}(A)=3$.

Select one:

- a. True
- b. False

 ✓

The correct answer is: False

Question **7**

Correct

Mark 1.00 out of 1.00

The vectors $\{-x+1,2x^2+3x+3,x^2+x+2\}$ form a basis for P_3 .

Select one:

- a. False
- o b. True

The correct answer is: False

Question 8

Correct

Mark 1.00 out of 1.00

Let V be a vector space, $v_1,v_2,\ldots v_n\in V$ be linearly independent, and $v\in V$, then the vectors $v_1,v_2,\ldots v_n,v$ are linearly independent.

Select one:

- a. True
- b. False

 ✓

The correct answer is: False

Correct

Mark 1.00 out of 1.00

dimension of the subspace $S=\operatorname{Span}\left\{A_1=\begin{pmatrix}0&1\\2&1\end{pmatrix},A_2\begin{pmatrix}3&1\\-1&0\end{pmatrix},A_3=\begin{pmatrix}6&-1\\-8&-3\end{pmatrix}\right\}$ is

Select one:

- \circ a. 1
- \circ b. 3
- \odot c. 2
 - **V**
- \bigcirc d. 0

The correct answer is: 2

Question 10

Incorrect

Mark 0.00 out of 1.00

If $T_{n imes n}$ is a transition matrix between two bases for a vector space V , $\dim(V)=n>0$, then

Select one:

- lacksquare a. $\mathrm{rank}(T)=1$
 - ×
- \circ b. $\det(T)=1$
- \circ c. $\operatorname{nullity}(T) = n$
- \circ d. T is nonsingular

The correct answer is: T is nonsingular

Question 11

Correct

Mark 1.00 out of 1.00

Let $S=\left\{ f\in C\left[-1,1
ight] :f\left(-1
ight) =f\left(1
ight)
ight\}$, then S is a subspace of $C\left[-1,1
ight]$.

Select one:

- a. True
- b. False

The correct answer is: True

Question 12

Correct

Mark 1.00 out of 1.00

Let A be a 4×6 matrix, and $\operatorname{nullity}(A) = 2$, then the system Ax = b has infinite number of solutions for every $b \in \mathbb{R}^4$.

Select one:

- a. True
- ob. False

The correct answer is: True

Question 13

Correct

Mark 1.00 out of 1.00

Let
$$S=\{\left(rac{x}{y}
ight)\in\mathbb{R}^2:x=1-y\}$$
 , then S is a subspace of $\mathbb{R}^2.$

Select one:

a. True

https://itc.birzeit.edu/mod/quiz/review.php?attempt=377561&cmid=176312

b. False

✓

Correct

Mark 1.00 out of 1.00

 $\operatorname{dim} ig(\operatorname{span}(x^2,3+x^2,x^2+1)ig)$ is

Select one:

- \circ a. 1
- \circ b. 0
- \circ c. 3
- lacksquare d. 2

~

The correct answer is: 2

Question **15**

Correct

Mark 1.00 out of 1.00

If $v_1,v_2,\cdots,v_n\in V$, $\dim(V)=n$ and v_1,v_2,\cdots,v_n are linearly independent, then Span $(v_1,v_2,\cdots,v_n)=V$, .

Select one:

- a. False
- b. True

The correct answer is: True

Question 16

Correct

Mark 1.00 out of 1.00

let A be a 3 imes 5-matrix, if the row echelon form of A has 1 nonzero row, then dim(column space of A) is

Select one:

- \circ a. 2
- \circ b. 0
- \circ c. 3
- \odot d. 1

~

The correct answer is: 1

Question 17

Incorrect

Mark 0.00 out of 1.00

If $f_1,f_2,\cdots,f_n\in C^{n-1}\left[a,b\right]$ and $W\left[f_1,f_2,\cdots,f_n\right](x_0)=0$ for some $x_0\in\left[a,b\right]$, then f_1,f_2,\cdots,f_n are linearly dependent.

Select one:

- a. False
- b. True X

The correct answer is: False

Incorrect

Mark 0.00 out of 1.00

Let E=[3-x,2+x] , F=[1,x] be ordered bases for P_2 . The transition matrix from E to F is

Select one:

- \circ a. $\begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}$
- \bigcirc b. $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$
- \odot c. $\begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}$

×

 \bigcirc d. $\begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$

Question 19

Correct

Mark 1.00 out of 1.00

Let $E=[2+x,1-x,x^2+1]$ be an ordered basis for P_3 . If $p\left(x\right)=-3x^2+x+5$, then the coordinate vector of $p\left(x\right)$ with respect to E is

Select one:

- \bigcirc a. $\begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix}$
- \bigcirc b. $\begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$
- \bigcirc c. $\begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix}$
- lacksquare d. $egin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$

Incorrect

Mark 0.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}\right]$ to the ordered basis

$$U=\left[u_1=\left(rac{2}{3}
ight),u_2=\left(rac{1}{2}
ight)
ight]$$
 is

Select one:

$$\bigcirc$$
 a. $T=\left(egin{array}{cc} 2 & -1 \ -3 & 2 \end{array}
ight)$

$$\bigcirc$$
 b. $T=egin{pmatrix}2&3\1&2\end{pmatrix}$

$$lacksquare$$
 c. $T=egin{pmatrix} 2 & 1 \ 3 & 2 \end{pmatrix}$

×

$$\bigcirc$$
 d. $T=egin{pmatrix} -2 & 1 \ 3 & -2 \end{pmatrix}$

The correct answer is: $T=\left(egin{array}{cc} 2 & -1 \ -3 & 2 \end{array}
ight)$

Question 21

Correct

Mark 1.00 out of 1.00

The coordinate vector of $\begin{pmatrix} -3 \\ -2 \\ -5 \end{pmatrix}$ with respect to the ordered basis $[\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}]$ is

Select one:

$$\bigcirc$$
 a. $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

$$\bigcirc$$
 b. $\begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$

$$\circ$$
 c. $\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$

$$ext{ o. } \begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix}$$

The correct answer is: $\begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix}$

Question **22**

Correct

Mark 1.00 out of 1.00

If two nonzero vectors in a vector space V are linearly dependent, then each of them is a scalar multiple of the other.

Select one:

- a. True
- O b. False

The correct answer is: True

Incorrect

Mark 0.00 out of 1.00

Which of the following is not a basis for the corresponding space

Select one:

- ullet a. $\{x+4, 1-x^2, x^2+x+3\}$; P_3
 - ×
- \bigcirc b. $\{(1,1)^T,(2,-3)^T\};\mathbb{R}^2$
- \circ c. $\{5-x,x-1\}$; P_2
- \bigcirc d. $\left\{ \left(-2,-1,-1
 ight)^T, \left(-3,-3,0
 ight)^T, \left(2,0,2
 ight)^T
 ight\}; \mathbb{R}^3$

The correct answer is: $\{(-2,-1,-1)^T,(-3,-3,0)^T,(2,0,2)^T\}$; \mathbb{R}^3

Question **24**

Correct

Mark 1.00 out of 1.00

If v_1,v_2,\cdots,v_k are vectors in a vector space V, and $\mathrm{Span}(v_1,v_2,\cdots,v_k)=\mathrm{Span}(v_1,v_2,\cdots,v_{k-1})$, then v_k can be written as alinear combination of v_1,v_2,\cdots,v_{k-1}

Select one:

- a. True
- b. False

The correct answer is: True

Question **25**

Correct

Mark 1.00 out of 1.00

If A is an m imes n-matrix, and columns of A are linearly independent, then

Select one:

- \bigcirc a. m=n
- \bigcirc b. m=n+1
- \circ c. $m \leq n$
- \odot d. $n \leq m$

~

The correct answer is: $n \leq m$

Question **26**

Correct

Mark 1.00 out of 1.00

Let A be a 5 imes 4 matrix, and $\operatorname{rank}(A) = 4$

Select one:

- igcup a. A has a row of zeros
- lacksquare b. The columns of A are linearly independent

~

- ${}^{\bigcirc}$ c. $\mathsf{nullity}(A) = 1$
- igcup d. The rows of A are linearly independent

The correct answer is: The columns of A are linearly independent

Incorrect

Mark 0.00 out of 1.00

If A is a nonzero 4 imes 2-matrix and Ax = 0 has infinitely many solutions, then $\mathrm{rank}(A) =$

Select one:

- lacksquare a. 2
 - ×
- \circ b. 4
- \circ c. 3
- \circ d. 1

The correct answer is: 1

Question 28

Correct

Mark 1.00 out of 1.00

If A is a 4 imes 3 matrix with rank(A)=3, then the homogeneous system Ax=0 has a nontrivial solution.

Select one:

- a. False
- ob. True

The correct answer is: False

Question 29

Correct

Mark 1.00 out of 1.00

let A be a 4 imes 7-matrix, if the row echelon form of A has 2 nonzero rows, then dim(column space of A) is

Select one:

- a. 7
- 0 b. 5
- © c. 2 ✓
- O d. 3

The correct answer is: 2

Question 30

Correct

Mark 1.00 out of 1.00

The functions $\sin x, \cos x, \sin \left(2x \right)$ in $C^2 \left[0, 2\pi
ight]$ are

Select one:

- a. linearly dependent
- b. linearly independent

The correct answer is: linearly independent

Question 31

Correct

Mark 1.00 out of 1.00

If A is a 3 imes 3-matrix, and Ax=0 has only the zero solution, then $\operatorname{\mathsf{nullity}}(A)=$

Select one:

- \circ a. 1
- \circ b. 3
- O c. 2
- d. 0
- *a*.

The correct answer is: 0

Question 32
Correct
Mark 1.00 out of 1.00

The vectors $\{(1,-1,-4)^T,(1,-1,1)^T,(1,-1,2)^T\}$ form a basis for \mathbb{R}^3 .

Select one:

- a. False
- ob. True

The correct answer is: False

Jump to...

Announcements ▶

<u>Data retention summary</u>